Разное

Симметричные рисунки по геометрии – Осевая симметрия рисунки по геометрии 8 класс

Осевая симметрия рисунки по геометрии 8 класс

В природе симметрия встречается очень часто. Ее можно наблюдать в расположении органов у животных, в строении листьев и цветов растений, во взмахе крыльев, одним словом везде. А человек взял на вооружение этот инструмент, и использует его и в проектировании сложных объектов, и в искусстве, а так же в других сферах деятельности. Различают осевую и центральную симметрию, а чтобы разобраться какая между ними разница, надо изучить рисунки из этой статьи.

Осевая симметрия.

Рисунок яблока в симметрии.

Центральная симметрия — симметрия относительно точки.

У равностороннего треугольника три оси симметрии.

На тетрадном листочке.

Зеркальное отражение.

Квадрат имеет четыре оси симметрии.

Центральная симметрия в квадратах.

Ось симметрии в творчестве.

Осевая симметрия.

Относительно одной точки. Все отрезки равны.

Симметрия относительно прямой.

Ось — воображаемая линия, делящая тело на две равные половины.

В художестве.

pickimage.ru

Осевая и центральная симметрия — урок. Математика, 6 класс.

Симметрия — слово греческого происхождения, как и многие другие слова, которые связаны с математикой. Оно означает соразмерность, наличие определённого порядка, закономерности в расположении частей. Смотря на объекты вокруг, мы не раз восклицаем: «Какая симметрия!»

 

Люди с давних времён использовали симметрию в рисунках, орнаментах, предметах быта, в архитектуре, художестве, строительстве.

Но симметрия широко распространена и в природе, где не было вмешательства человеческой руки. Её можно наблюдать в форме листьев и цветов растений, в расположении различных органов животных, в форме кристаллических тел, в порхающей бабочке, загадочной снежинке, морской звезде.

 

 

Пока рассмотрим две симметрии на плоскости: относительно точки и прямой.

Центральная  симметрия

Симметрию относительно точки называют центральной симметрией.

Точки M и M1 симметричны относительно некоторой точки  \(O\), если точка \(O\) является серединой отрезка MM1.


Точка \(O\) называется центром симметрии.

 

Алгоритм построения центрально-симметричных фигур.

Построим треугольник A1B1C1, симметричный треугольнику \(ABC\) относительно центра (точки) \(O\):

 

1. для этого соединим точки \(A\), \(B\), \(C\) с центром \(O\) и продолжим эти отрезки;
2. измерим отрезки \(AO\), \(BO\), \(CO\) и отложим с другой стороны от точки \(O\) равные им отрезки AO=OA1;BO=OB1;CO=OC1;
3. соединим получившиеся точки отрезками и получим треугольник A1B1C1, симметричный данному треугольнику \(ABC\).

Фигуры, симметричные относительно некоторой точки, равны.

Фигура симметрична относительно центра симметрии, если для каждой этой точки фигуры симметричная ей точка также лежит на этой фигуре. Такая фигура имеет центр симметрии (фигура с центральной симметрией).

Есть фигуры с центральной симметрией, это, например, окружность и параллелограмм. У окружности центр симметрии — это её центр, у параллелограмма центр симметрии — это точка, в которой пересекаются его диагонали. Есть очень много фигур, у которых нет центра симметрии.

Осевая симметрия

Осевая симметрия — это симметрия относительно проведённой прямой (оси).

Точки M и M1 симметричны относительно некоторой прямой (оси симметрии), если эти точки лежат на прямой, перпендикулярной данной, и на одинаковом расстоянии от оси симметрии.

 

Алгоритм построения фигуры, симметричной относительно некоторой прямой.


 

Построим треугольник A1B1C1, симметричный треугольнику \(ABC\) относительно красной прямой:

 

1. для этого проведём из вершин треугольника \(ABC\) прямые, перпендикулярные оси симметрии, и продолжим их дальше на другой стороне оси.
2. Измерим расстояния от вершин треугольника до получившихся точек на прямой и отложим с другой стороны прямой такие же расстояния.
3. Соединим получившиеся точки отрезками и получим треугольник A1B1C1, симметричный данному треугольнику \(ABC\).

Фигуры, симметричные относительно прямой, равны.

Фигура считается симметричной относительно прямой, если для каждой точки рассматриваемой фигуры симметричная для неё точка относительно данной прямой также находится на этой фигуре. Прямая является в этом случае осью симметрии фигуры.

Иногда у фигур несколько осей симметрии:

  • для неразвёрнутого угла существует единственная ось симметрии — это биссектриса данного угла.
  • Для равнобедренного треугольника есть единственная ось симметрии.
  • Для равностороннего треугольника — три оси.
  • Для прямоугольника и ромба существуют две оси симметрии.
  • Для квадрата — целых четыре.
  • Для окружности осей симметрии бесчисленное множество — это каждая прямая, которая проходит через центр этой фигуры.
  • Есть фигуры без осей симметрии — это параллелограмм и треугольник, все стороны которого различны.

www.yaklass.ru

Прямоугольник, ромб и квадрат. Осевая и центральная симметрии

На этом уроке мы рассмотрим ещё одну характеристику некоторых фигур – осевую и центральную симметрию. С осевой симметрией мы сталкиваемся каждый день, глядя в зеркало. Центральная симметрия очень часто встречается в живой природе. Вместе с тем, фигуры, которые обладают симметрией, имеют целый ряд свойств. Кроме того, впоследствии мы узнаем, что осевая и центральная симметрии являются видами движений, с помощью которых решается целый класс задач.

Данный урок посвящён осевой и центральной симметрии.

Определение

Две точки  и  называются симметричными относительно прямой , если:

1.      прямая  проходит через середину отрезка ;

2.      прямая  перпендикулярна отрезку.

На Рис. 1 изображены примеры симметричных относительно прямой  точек  и ,  и .

Рис. 1

Отметим также тот факт, что любая точка прямой симметрична сама себе относительно этой прямой.

Симметричными относительно прямой могут быть и фигуры.

Сформулируем строгое определение.

Определение

Фигура называется симметричной относительно прямой , если для каждой точки фигуры симметричная ей относительно этой прямой точка также принадлежит фигуре. В этом случае прямая  называется осью симметрии. Фигура при этом обладает осевой симметрией.

Рассмотрим несколько примеров фигур, обладающих осевой симметрией, и их оси симметрии.

Пример 1

Угол обладает осевой симметрией. Осью симметрии угла является биссектриса. Действительно: опустим из любой точки угла перпендикуляр к биссектрисе и продлим его до пересечения с другой стороной угла (см. Рис. 2).

Рис. 2

 (так как  – общая сторона,  (свойство биссектрисы), а треугольники – прямоугольные). Значит, . Поэтому точки  и  симметричны относительно биссектрисы угла.

Из этого следует, что и равнобедренный треугольник обладает осевой симметрии относительно биссектрисы (высоты, медианы), проведённой к снованию.

Пример 2

Равносторонний треугольник обладает тремя осями симметрии (биссектрисы/медианы/высоты каждого из трёх углов (см. Рис. 3).

Рис. 3

Пример 3

Прямоугольник обладает двумя осями симметрии, каждая из которых проходит через середины двух его противоположных сторон (см. Рис. 4).

Рис. 4

Пример 4

Ромб также обладает двумя осями симметрии: прямые, которые содержат его диагонали (см. Рис. 5).

Рис. 5

Пример 5

Квадрат, являющийся одновременно ромбом и прямоугольником, обладает 4 осями симметрии (см. Рис. 6).

Рис. 6

Пример 6

У окружности осью симметрии является любая прямая, проходящая через её центр (то есть содержащая диаметр окружности). Поэтому окружность имеет бесконечно много осей симметрии (см. Рис. 7).

Рис. 7

Рассмотрим теперь понятие центральной симметрии.

Определение

Точки  и  называются симметричными относительно точки , если:  – середина отрезка .

Рассмотрим несколько примеров: на Рис. 8 изображены точки  и , а также  и , которые являются симметричными относительно точки , а точки  и  не являются симметричными относительно этой точки.

Рис. 8

Некоторые  фигуры являются симметричными относительно некоторой точки. Сформулируем строгое определение.

Определение

Фигура называется симметричной относительно точки , если для любой точки фигуры точка, симметричная ей, также принадлежит данной фигуре. Точка  называется центром симметрии, а фигура обладает центральной симметрией.

Рассмотрим примеры фигур, обладающих центральной симметрией.

Пример 7

У окружности центром симметрии является центр окружности (это легко доказать, вспомнив свойства диаметра и радиуса окружности) (см. Рис. 9).

Рис. 9

Пример 8

У параллелограмма центром симметрии является точка пересечения диагоналей (см. Рис. 10). 

Рис. 10

Решим несколько задач на осевую и центральную симметрию.

Задача 1.

Сколько осей симметрии имеет отрезок ?

Решение:

Отрезок имеет две оси симметрии. Первая из них – это прямая, содержащая отрезок (так как любая точка прямой симметрична сама себе относительно этой прямой). Вторая – серединный перпендикуляр к отрезку, то есть прямая, перпендикулярная отрезку и проходящая через его середину.

Ответ: 2 оси симметрии.

Задача 2.

Сколько осей симметрии имеет прямая ?

Решение:

Прямая имеет бесконечно много осей симметрии. Одна из них – это сама прямая (так как любая точка прямой симметрична сама себе относительно этой прямой). А также осями симметрии являются любые прямые, перпендикулярные данной прямой.

Ответ: бесконечно много осей симметрии.

Задача 3.

Сколько осей симметрии имеет луч ?

Решение:

Луч имеет одну ось симметрии, которая совпадает с прямой, содержащей луч (так как любая точка прямой симметрична сама себе относительно этой прямой).

Ответ: одна ось симметрии.

Задача 4.

Доказать, что прямые, содержащие диагонали ромба, являются его осями симметрии.

Доказательство:

Рассмотрим ромб . Докажем, к примеру, что прямая  является его осью симметрии. Очевидно, что точки  и  являются симметричными сами себе, так как лежат на этой прямой. Кроме того, точки  и  симметричны относительно этой прямой, так как . Выберем теперь произвольную точку  и докажем, что симметричная ей относительно  точка также принадлежит ромбу (см. Рис. 11).

Рис. 11

Проведём через точку  перпендикуляр к прямой  и продлим его до пересечения с . Рассмотрим треугольники  и . Эти треугольники прямоугольные (по построению), кроме того, в них:  – общий катет, а  (так как диагонали ромба являются его биссектрисами). Значит, эти треугольники равны:

interneturok.ru

Центральная и осевая симметрии [wiki.eduVdom.com]

Центральная симметрия

Две точки А и А1 называются симметричными относительно точки О, если О — середина отрезка АА1 (рис.1). Точка О считается симметричной самой себе.

Пример центральной симметрии

Точки А и А1 – симметричные относительно точки О

Рис.1

Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры. Говорят также, что фигура обладает центральной симметрией.

Примерами фигур, обладающих центральной симметрией, являются окружность и параллелограмм (рис.2).

Центральная симметрия

Фигуры, обладающие центральной симметрией

Рис.2

Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма — точка пересечения его диагоналей. Прямая также обладает центральной симметрией, однако в отличие от окружности и параллелограмма, которые имеют только один центр симметрии (точка О на рис.2), у прямой их
бесконечно много — любая точка прямой является ее центром симметрии.

Осевая симметрия

Две точки А и А1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА1 и перпендикулярна к нему (рис.3). Каждая точка прямой а считается симметричной самой себе.

Осевая симметрия

Точки А и А1 — симметричные относительно прямой а

Рис.3

Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой
фигуре.
Прямая а называется осью симметрии фигуры.

Примеры таких фигур и их оси симметрии изображены на рисунке 4.

Осевая симметрия

Рис.4

Заметим, что у окружности любая прямая, проходящая через ее центр, является осью симметрии.

Сравнение симметрий

Центральная и осевая симметрии

Построение треугольника (а) симметрично относительно оси (б) и точки (в)

Рис.5

Пример

Сколько всего осей симметрии имеет фигура, изображённая на рисунке?

Дополнительно


subjects/geometry/центральная_и_осевая_симметрии.txt · Последние изменения: 2013/10/12 02:02 —

www.wiki.eduvdom.com

Картинки центральной симметрии (37 ФОТО) ⭐ Забавник

Центральную симметрию иногда путают с осевой симметрией. У каждой симметричной фигуры есть точка А – центр симметрии. В планиметрии под этим понятием подразумевается поворот на 180 градусов

 

Машина

 

Треугольники

 

Круги

 

Очки

 

Поверхность

 

Rotation

 

Круг, треугольник, квадрат

 

2 треугольника

 

Коктейль

 

Central Symmetry

 

Пёс

 

3 треугольника

 

Верблюд

 

Купол

 

Молекулы

 

Колпак

 

Кирпичная башня в металлической башне

 

Пересекающиеся линии

 

Окно в соборе

 

Пересечение треугольников

 

Башня на фоне неба

 

Рисунок витража

 

Анимация симметрии

 

Central Axis Line

 

 

 

Ваша оценка очень важна: Загрузка…

Поделиться на Facebook

Поделиться в ВК

Поделиться в ОК

Поделиться в Twitter

zabavnik.club

Примеры центральной симметрии — презентация по Геометрии

Презентация на тему: Примеры центральной симметрии

Скачать эту презентацию

Скачать эту презентацию

№ слайда 1

Описание слайда:

Подготовили ученики X «А» класса: Зацепина Екатерина, Павлова Юлия. Центральная симметрия. 5klass.net

№ слайда 2

Описание слайда:

Центральная симметрия. Определение: Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры. Говорят также, что фигура обладает центральной симметрией.

№ слайда 3

Описание слайда:

Приведём примеры фигур, обладающие центральной симметрией: Простейшими фигурами, обладающими центральной симметрией, является окружность и параллелограмм. Центром симметрии окружности является центр окружности,а центром симметрии параллелограмма — точка пересечения его диагоналей. O O

№ слайда 4

Описание слайда:

А В О Две точки А и В называются симметричными относительно точки О, если О — середина отрезка АВ. Точка О считается симметричной самой себе.

№ слайда 5

Описание слайда:

Например: На рисунке точки М и М1, N и N1 симметричны относительно точки О, а точки Р и Q не симметричны относительно этой точки. М М1 N N1 О Р Q

№ слайда 6

Описание слайда:

Центральная симметрия в прямоугольной системе координат: Если в прямоугольной системе координат точка А имеет координаты (x0;y0), то координаты (-x0;-y0) точки А1, симметричной точке А относительно начала координат, выражаются формулами x0 = -x0 y0 = -y0 у х 0 А(x0;y0) А1(-x0;-y0) x0 -x0 y0 -y0

№ слайда 7

Описание слайда:

Центральная симметрии в прямоугольных трапециях: О

№ слайда 8

Описание слайда:

Центральная симметрия в квадратах: О

№ слайда 9

Описание слайда:

Центральная симметрия в параллелограммах: О

№ слайда 10

Описание слайда:

Центральная симметрия в шестиконечной звезде: О

№ слайда 11

Описание слайда:

Точка О является центром симметрии, если при повороте вокруг точки О на 180° фигура переходит сама в себя. О 180°

№ слайда 12

Описание слайда:

Прямая также обладает центральной симметрией, однако в отличие от других фигур, которые имеют только один центр симметрии(точка О на рисунках), у прямой их бесконечно много — любая точка прямой является её центром симметрии. Примером фигуры, не имеющей центра симметрии, является треугольник. А В С

№ слайда 13

Описание слайда:

Применение на практике: Примеры симметрии в растениях: Вопрос о симметрии в растениях возник ещё в 5 веке до н. э. На явление симметрии в живой природе обратили внимание в Древней Греции пифагорейцы в связи с развитием ими учения о гармонии. В 19 веке появлялись отдельные работы, касающиеся этой темы. А в 1961 году как результат многовековых исследований, посвященных поиску красоты и гармонии окружающей нас природы, появилась наука биосимметрика. Центральная симметрия характерна для различных плодов: голубика, черника, вишня, клюква. Рассмотрим разрез любой из этих ягод. В разрезе она представляет собой окружность, а окружность, как нам известно, имеет центр симметрии. Центральную симметрию можно наблюдать на изображении таких цветов как цветок одуванчика, цветок мать-и-мачехи, цветок кувшинки, сердцевина ромашки, а в некоторых случаях центральной симметрией обладает и изображение всего цветка ромашки. Её сердцевина представляет собой окружность, и поэтому центрально симметрична, так как мы знаем, что окружность имеет центр симметрии. Весь же цветок обладает центральной симметрией только в случае четного количества лепестков. В случае же нечетного количества лепестков, вспомните анютины глазки , он обладает только осевой. Выводы: По нашим наблюдениям, в любом растении можно найти какую-то его часть, обладающую осевой или центральной симметрией. Это могут быть листья, цветы, стебли, стволы деревьев, плоды, и более мелкие части, такие как сердцевина цветка, пестик, тычинки и другие. Осевая симметрия присуща различным видам растений и грибам, и их частям. Центральная симметрия наиболее характерна для плодов растений и некоторых цветов.

№ слайда 14

Описание слайда:

Ромашка Анютины глазки

№ слайда 15

Описание слайда:

Центральная симметрия в архитектуре: Во второй половине XVIII — первой трети XIX века Петербург приобрёл воспетый А.С. Пушкиным “строгий, стройный вид”, который придала городу архитектура классицизма. Все здания, построенные в стиле классицизм, имеют четкие прямолинейные симметричные композиции. В начале XIX века по проекту А.Н. Воронихина было сооружено выдающееся произведение искусства – Казанский собор. Перед Казанским собором симметрично установлены памятники М.И. Кутузову и М.Б. Барклаю-де-Толли, полководцам, разгромившим армию Наполеона. Примером современных зданий, построенных в середине ХХ века, является гостиница “Прибалтийская”. Симметричность, как видно из чертежа присутствует как в общей композиции, так и в каждой из трех его составляющих:средняя часть – арка с куполом и пикой на вершине, два боковых крыла гостиницы. Выводы: Принципы симметрии являются основополагающими для любого архитектора, но вопрос о соотношении между симметрией и асимметрией каждый архитектор решает по-разному. Асимметричное в целом сооружение может являть собой гармоническую композицию симметричных элементов. Удачное решение определяется талантом зодчего, его художественным вкусом и его пониманием прекрасного. Прогуляйтесь по нашему городу и убедитесь, что удачных решений может быть очень много, но неизменным остается одно – стремление архитектора к гармонии, а это в той или иной степени связано с симметрией.

№ слайда 16

Описание слайда:

Гостиница «Прибалтийская» Казанский собор

№ слайда 17

Описание слайда:

Центральная симметрия в зоологии: Рассмотрим, как связаны животный мир и симметрия. Центральная симметрия наиболее характерна для животных, ведущих подводный образ жизни. А также есть пример асимметричных животных: инфузория-туфелька и амёба Выводы: Симметрию живого существа определяет направление его движения. Для живых существ, для которых ведущим направлением является направление движения “вперед”, наиболее характерна осевая симметрия. Так как в этом направлении животные устремляются за пищей и в этом же спасаются от преследователей. А нарушение симметрии привело бы к торможению одной из сторон и превращению поступательного движения в круговое. Центральная симметрия чаще встречается в форме животных, обитающих под водой. Асимметрию можно наблюдать на примере простейших животных.

№ слайда 18

Описание слайда:

Лягушка Паук Бабочка

№ слайда 19

Описание слайда:

инфузория-туфелька и амёба

№ слайда 20

Описание слайда:

Центральная симметрия в транспорте: Центральная симметрия не совместима с формой наземного и подземного транспорта. Причиной этого служит его направление движения. При рассмотрении вида сверху трамвая, электровоза, телеги, мы видим, что ось симметрии проходит вдоль направления движения. Таким образом, центральную симметрию следует искать в воздушном и подводном транспорте, т. е. в таких видах, где направления: вперед, назад, вправо, влево, – равноценны. Один из таких видов транспорта – это воздушный шар. Другой пример воздушного транспорта – это парашют. Ученые относят его изобретение еще к 13 веку. На нашем чертеже мы представили вид сверху воздушного шара. Отметим, что он аналогичен виду сверху парашюта. Как мы видим, эта фигура центрально симметрична. О – центр симметрии. Дальнейшее развитие парашют получил в изобретении нашими учеными “надувного тормозного устройства”. Оно предназначено для спуска грузов и человека с орбиты. Надувное тормозное устройство представляет собой эластичную оболочку, наполняемую в космосе. Она имеет гибкую теплозащиту и дополнительную надувную оболочку. На базе него предполагается конструирование и спасательных устройств, которые могут использоваться, например, при пожаре в многоэтажных домах. Вид сверху этого устройства представляет собой круг. А круг, как мы знаем, не только обладает осевой симметрией, но и центральной. Центр симметрии совпадает с центром круга. Выводы: Вид сверху и вид спереди различных видов транспорта обладает либо центральной, либо осевой симметрией. Для наземного вида транспорта в большей степени характерна осевая симметрия. Причиной этого является направление его движения. Центральная симметрия чаще встречается в форме воздушного и подводного транспорта, для которого направления: вправо, влево, вперед, назад, – равноценны. Модели транспорта будущего в той же степени, что и модели настоящего и прошлого обладают различными видами.

№ слайда 21

Описание слайда:

Надувное тормозное устройство Капсула поезда Парашют (вид сверху)

№ слайда 22

Описание слайда:

А также с симметрией мы часто встречаемся в искусстве, архитектуре, технике, быту. В большинстве случаев симметричны относительно центра узоры на коврах, тканях, комнатных обоях. Симметричны многие детали механизмов, например зубчатые колёса.

№ слайда 23

Описание слайда:

Аксиомы стереометрии и планиметрии Подготовила: ученица Х «А» класса Зацепина Екатерина.

№ слайда 24

Описание слайда:

Аксиомы стереометрии.

№ слайда 25

Описание слайда:

Аксиома 1(С1): Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие ей. А α , В α α Α в Э Э

№ слайда 26

Описание слайда:

Аксиома 2(С2): Если две различные плоскости имеют общую точку, то они пересекаются по одной прямой, проходящей через эту точку. β α А α А β Э Э } α β = m U m А

№ слайда 27

Описание слайда:

Аксиома 3(С3): Если две различные прямые имеют общую точку, то через них можно провести плоскость, и притом только одну. a b = d a, b, d α U Э d α в a

№ слайда 28

Описание слайда:

Аксиомы планиметрии.

№ слайда 29

Описание слайда:

Аксиома I: Какова бы не была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей. Через любые две точки можно провести прямую, и только одну. А α , В α Э Э А В А,В=α α α А В

№ слайда 30

Описание слайда:

Аксиома II: Из трёх точек на прямой одна и только одна лежит между двумя другими. А В С

№ слайда 31

Описание слайда:

Аксиома III: Каждый отрезок имеет определённую длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой. А В АВ > 0

№ слайда 32

Описание слайда:

Аксиома III: Каждый отрезок имеет определённую длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой. А В АC + CВ > 0 C

№ слайда 33

Описание слайда:

Аксиома III: Каждый отрезок имеет определённую длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой. А В АC+CВ > 0 C

№ слайда 34

Описание слайда:

Аксиома IV: Прямая, принадлежащая плоскости, разбивает эту плоскость на две полуплоскости: β и φ β α φ

№ слайда 35

Описание слайда:

Аксиома V: Каждый угол имеет определённую градусную меру, большую нуля. Развёрнутый угол равен 180 . Градусная мера угла равна сумме, градусных мер углов,на которые он разбивается любым лучом, проходящим между его сторонами. 180 В А

№ слайда 36

Описание слайда:

Аксиома VI: На любой полупрямой от её начальной точки можно отложить отрезок заданной длины, и только один. А В АВ α Э

№ слайда 37

Описание слайда:

Аксиома VII: От полупрямой на содержащей её плоскости в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180, и только один. φ = 45°< 180° α b φ=45°

№ слайда 38

Описание слайда:

Аксиома VIII: Каков бы ни был треугольник, существует равный ему треугольник в данной плоскости в заданном расположении относительно данной полупрямой в этой плоскости. α а А В С А1 В1 С1

№ слайда 39

Описание слайда:

Аксиома IX: На плоскости через данную точку, не лежащую на данной прямой, можно провести не более одной прямой, параллельной данной. А α β φ B

№ слайда 40

Описание слайда:

Аксиома 1(С1): Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие ей. А α , В α α Α в Э Э

№ слайда 41

Описание слайда:

Аксиома I: Какова бы не была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей. Через любые две точки можно провести прямую, и только одну. А α , В α Э Э А В А,В=α α α А В

ppt4web.ru

Симметрия и её виды | Обучонок

1. Симметрия и ее виды

Понятие симметрии проходит через всю историю человечества. Оно встречается уже у истоков человеческого знания. Возникло оно в связи с изучением живого организма, а именно человека. И употреблялось скульпторами ещё в 5 веке до нашей эры. Слово “симметрия” греческое, оно означает “соразмерность, пропорциональность, одинаковость в расположении частей”.

Его широко используют все без исключения направления современной науки. Немецкий математик Герман Вейль сказал: “Симметрия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство”. Его деятельность приходится на первую половину ХХ века. Именно он сформулировал определение симметрии, установил по каким признакам усмотреть наличие или, наоборот, отсутствие симметрии в том или ином случае. Таким образом, математически строгое представление сформировалось сравнительно недавно – в начале ХХ века.

1.1. Осевая симметрия

Две точки А и А1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА1 и перпендикулярна к нему (Рисунок 2.1). Каждая точка прямой а считается симметричной самой себе.

Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой a также принадлежит этой фигуре (Рисунок 2.2).

Прямая а называется осью симметрии фигуры.

Говорят также, что фигура обладает осевой симметрией.

Осевой симметрией обладают такие геометрические фигуры как угол, равнобедренный треугольник, прямоугольник, ромб (Рисунок 2.3).

Фигура может иметь не одну ось симметрии. У прямоугольника их две, у квадрата – четыре, у равностороннего треугольника – три, у круга – любая прямая, проходящая через его центр.

Если присмотреться к буквам алфавита (Рисунок 2.4)., то и среди них можно найти, имеющие горизонтальную или вертикальную, а иногда и обе оси симметрии. Объекты, имеющие оси симметрии достаточно часто встречаются в живой и неживой природе.

Имеются фигуры, у которых нет ни одной оси симметрии. К таким фигурам относятся параллелограмм, отличный от прямоугольника, разносторонний треугольник.

В своей деятельности человек создаёт много объектов (в том числе и орнаменты), имеющих несколько осей симметрии.

1.2 Центральная симметрия

Две точки А и А1 называются симметричными относительно точки О, если О — середина отрезка АА1. Точка О считается симметричной самой себе (Рисунок 2.5).

Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре [1].

Простейшими фигурами, обладающими центральной симметрией, является окружность и параллелограмм (Рисунок 2.6).

Точка О называется центром симметрии фигуры. В подобных случаях фигура обладает центральной симметрией. Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма — точка пересечения его диагоналей.

Прямая также обладает центральной симметрией, однако в отличие от окружности и параллелограмма, которые имеют только один центр симметрии у прямой их бесконечно много — любая точка прямой является её центром симметрии. Примером фигуры, не имеющей центра симметрии, является треугольник.

1.3. Поворотная симметрия

Предположим, что объект совмещается сам с собой при повороте вокруг некоторой оси на угол, равный 360°/n (или кратный этой величине), где n = 2, 3, 4, … В этом случае о поворотной симметрии, а указанную ось называют поворотной осью n-го порядка.

Рассмотрим примеры со всеми известными буквами «И» и «Ф». Что касается буквы «И», то у нее есть так называемая поворотная симметрия. Если повернуть букву «И» на 180° вокруг оси, перпендикулярной к плоскости буквы и проходящей через ее центр, то буква совместится сама с собой.

Иными словами, буква «И» симметрична относительно поворота на 180°. Заметим, что поворотной симметрией обладает также буква «Ф».

На рисунке 2.7. даны примеры простых объектов с поворотными осями разного порядка – от 2-го до 5-го. [3]

Перейти к разделу: 1.4. Зеркальная симметрия

obuchonok.ru